Pacific Island Blue Carbon Knowledge Exchange Network: PIBLUEX

Richard Bngaol MacKenzie, Laurel Gutenberg, Sahadev Sharma

Richard.mackenzie@usda.gov

2024 International Partnership for Blue Carbon Dialogue, Cairns, Oct 1-4, 2024

Why? Coordinate efforts and allow groups and individuals to pool resources and information for a more strategic and synergistic approach to assessing blue carbon ecosystems at the **national level**.

What is it? A consortium of NGOs, government organizations and individuals interested in conducting blue carbon assessments in the Pacific region.

BLUE CARBON KNOWLEDGE EXCHANGE NET WORK

Importance of BC assessments at national level: Cambodia

Sharma et al. 2020

Importance of BC assessments at national level: Palau

Pacific Island Blue Carbon Knowledge Exchange Network

- Created a Blue Carbon Dream Team comprised of Fijians, Samoans, and Palauans
- Trained on remote sensing and field protocols to conduct a national assessment of Palau's mangroves and seagrass

Remote sensing

- 1. Babeldaob North: Mereoni, Tavita, Rodney
- 2. Babeldaob Middle: Kalesi, Faainu, Jacquie
- 3. Babeldaob South: Zoyha, Mohammed, Darlynne
- 4. Koror: Xiao, Vitolina, Victor
- 5 & 6. Pelellu & Angaur: Isaac, Mike, Dave, Henry

Training sites

458,293.27E 813,853.81N m 💉

Validation or error assessment

_	А	В	С	D	E	F	G	н	1	J
1		[Actual] Water	[Actual] Seagrass (patchy)	[Actual] Seagrass (dense)	[Actual] Land	[Actual] Cloud	[Actual] Reef	[Actual] Bare	Total	Prod.'s Accuracy
2	[mapped] Water	101	11	4	2	8	13	8	147	68.71%
3	[mapped] Seagrass (patchy)	8	176	30	8	2	9	12	245	71.84%
4	[mapped] Seagrass (dense)	13	25	164	13	8	7	7	237	69.20%
5	[mapped] Land	7	9	11	109	5	6	11	158	68.99%
6	[mapped] Cloud	10	6	7	5	85	3	5	121	70.25%
7	[mapped] Reef	4	8	11	9	3	96	9	140	68.57%
8	[mapped] Bare	9	4	5	2	4	7	89	120	74.17%
9	Total	152	239	232	148	115	141	141		
10	User's Accuracy	66.45%	73.64%	70.69%	73.65%	73.91%	68.09%	63.12%		70.21%

Field sampling

Field sampling

What worked?

- 1) Created a trained Blue Carbon Dream Team
 - ready to assess Samoa's BCEs (2025) and (maybe) Fiji's BCEs (2026)
- 2) Generated aerial estimates and carbon stocks of mangroves that have been used in Palau's national communications
- Generated aerial estimates and carbon stocks (soon) of seagrasses that will be used in Palau's national communications

• Lessons learned/challenges

1) Include density estimates (light (0-10%); medium (10-50%); dense (50-100%)

• Lessons learned/challenges

- Include density estimates (light (0-10%); medium (10-50%); dense (50-100%)
- 2) How to separate species for vegetation carbon stocks
- 3) Depth of water and tidal height correction could improve mapping process
- 4) Assessing mixed pixels (e.g., coral and seagrass, algae and seagrass, etc.)
- 5) Better spread of ground-truthing points

• Lessons learned/challenges

-) Include density estimates (light (0-10%); medium (10-50%); dense (50-100%)
- 2) How to separate species for vegetation carbon stocks
- 3) Depth of water and tidal height correction could improve mapping process
- 4) Assessing mixed pixels (e.g., coral and seagrass, algae and seagrass, etc.)
- 5) Better spread of ground-truthing points
- 6) Accounting for compaction in soils cores
- 7) Effectively removing CaCO3 from soil cores
- 8) Crocodiles?

Rich MacKenzie richard.mackenzie@usda.gov